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Abstract. The presence of mesoscopic features and damage in quasi-brittle materials causes
significant second-order and nonlinear effects on the acoustic wave propagation characteristics.
In order to quantify the influence of such micro-inhomogeneities, a new and promising tool for
nondestructive material testing has been developed and applied in the field of damage detection.
The technique focuses on the acoustic nonlinear (i.e., amplitude-dependent) response of one of
the material’s resonance modes when driven at relatively small wave amplitudes. The method is
termed single-mode nonlinear resonance acoustic spectroscopy (SIMONRAS). The behavior of
damaged materials is manifested by amplitude dependent resonance frequency shifts, harmonic
generation, and nonlinear attenuation. We illustrate the method by experiments on artificial slate
tiles used in roofing construction. The sensitivity of this method to discern material damage is far
greater than that of linear acoustic methods.

1. Introduction

The elastic behavior of brittle materials such as brick, slate, concrete, rock, sand, and
soil is manifest by strong nonlinearity, hysteresis in stress–strain relation, and discrete
memory. Primarily, it is the materials’ compliance, represented by the mesoscopic link-
ages (order 10−6–10−9 m) between the rigid components, that gives these materials
their unusual elastic properties. Materials with nonlinear mesoscopic elasticity stand
in contrast to liquids and crystalline solids whose elasticity is due to contributions of
atomic level forces, i.e., materials with atomic elasticity. Atomic elastic materials are
well described by the traditional theory of elasticity [1, 2]; however, mesoscopic elas-
tic materials are not. For low strain levels, mesoscopic materials are well described
by the Preisach-Mayergoyz (P-M) model of nonlinear elasticity, as developed in the
mesoscopic model by McCall and Guyer [3, 4]. A sequence of experiments on nu-
merous intact and microcracked materials illustrates the evidence of nonlinear meso-
scopic elastic behavior and yields the significant conclusion that damaged atomic elas-
tic materials behave as mesoscopic elastic materials [5, 6]. Qualitatively, the amount
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of nonlinearity is highly correlated to the damage/microcracked state of the mate-
rial [7].
Recently a couple of promising and powerful nondestructive evaluation (NDE) tools

for damage interrogation in materials have been developed. The methods basically study
the amplitude-dependent frequency response in dynamic wave experiments, and are
termed nonlinear elastic wave spectroscopy (NEWS) techniques. One method is nonlin-
ear wave modulation spectroscopy (NWMS) and is described in Part I [8, 9]. In short,
NWMS is based on the monitoring of nonlinear frequency mixing in the material. The
manifestations of the nonlinear response appear as wave distortion and accompanying
wave harmonics, and in sum and difference frequency generation (sidebands). The ap-
proach has proved to be time efficient and effective in discerning damage to materials.
The second method is called nonlinear resonant ultrasound spectroscopy (NRUS): the
study of the nonlinear response of a single, or a group of, resonant modes of the material
[5, 10, 11]. Granular and microcracked materials always show nonlinear softening of the
elastic modulus with increasing drive levels in dynamic resonance experiments, even at
strains as low as 10−8. As a result, the resonance frequency shifts, harmonics are gen-
erated, and amplitude-dependent damping characteristics are observed. In undamaged
materials, these phenomena are very weak. In damaged materials, they are remarkably
large.
In this paper we focus on theNRUS technique and its application to damage detection.

In a previous publication, we constructed a diagnostic method which is used to quantify
the acoustic nonlinearity of homogenous and isotropic samples in laboratory benchtop
resonance experiments [11]. The analysis of the experimental data is supported by a
phenomenological model based on the P-M implementation of hysteresis. In general,
six material parameters—two linear and four nonlinear—can be extracted from the data.
These six parameters completely define the material state of the sample (depending on
confining pressure, saturation, damage, etc.) and may be found from a simple set of
nonlinear experiments: (1) measure the relative frequency shift as a function of mea-
sured acceleration, (2) measure the amplitude dependence of the measured second and
third harmonic levels, and (3) measure the relaxation of the linear modulus after high
excitation.
The characterization procedure is applied to damage detection in thin slate beams.We

investigate the first-order bending mode, which has a resonance frequency well below
500 Hz (acoustic resonance). Linear (wave speed and wave dissipation) and nonlinear
parametersweremeasured for progressive fatigue, induced by cyclicmechanical loading.
Wewill show that the sensitivity of nonlinearmethods to the detection of damage features
(cracks, flaws, etc.) is far greater than that of linear acoustical methods.

2. Experiment and Configuration

The experimental apparatus used to obtain the results discussed in this paper is shown
in Fig. 1. A similar configuration for the study of cylindrical cores is described and used
by TenCate and Shankland [10] and by Van Den Abeele and TenCate [11]. The samples
are thin, rectangular beams of artificial slate used in roofing construction. The major
component in their composition is Portland cement. Mineral additives and synthetic
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Fig. 1. Experimental setup for SIMONRAS
experiments.

organic fibers are added for strength enhancement. The open porosity is about 26%.
The nominal dimensions of the beams used in the present study are 200 mm × 20 mm
×4 mm.
The beams are excited at their lowest-order bending resonance mode by a low-

frequency, low-distortion speaker. The displacement distribution corresponding to this
resonance has two nodal positions (at 0.224× L from the edges, with L the length of the
beam) from which the samples are supported by thin nylon wires. The strain concentra-
tion is located in the middle of the beam. The first-order resonance frequency is typically
of order 300 Hz, and the linear attenuation, measured from the resonance width and
expressed as a modal damping ratio ξ , equals 0.005 (i.e., a quality factor Q of 100, since
Q = 1

2ξ ) [12]. The speaker is positioned at 2 cm from the middle, parallel to the beam
surface. It is driven in discrete frequency steps by a function generator through a high-
power amplifier. The coupling medium between specimen and speaker is air (noncontact
excitation). A B&K 4375 accelerometer attached to one end of the beam measures the
sample’s out-of-plane response. The signal from the accelerometer is preamplified, fed
into a 16-bit A/D convertor, and analyzed using LabVIEW. A lock-in virtual instrument
is used to measure the fundamental frequency level. The harmonic content is analyzed
using LabVIEW’s “Harmonic Analyzer”-vi. The apparatus is capable of measuring ac-
celerations down to 10−2 m/s2, which typically corresponds to inferred strains of 10−9

for rectangular beam samples of 200 mm in length and 4 mm in thickness. In order
to monitor resonant peak shift and harmonic generation, 4 to 10 resonance sweeps are
made at successively increasing drive voltages over the same frequency interval. With
Q (“inverse attenuation,” 1

2ξ ) being 100, a single sweep is typically 1 min in duration,
depending on the frequency step size. Sweep rates, step sizes, and data storage are all
PC controlled.
In a sample that is intact (atomic), the resonance curves scale linearly with the applied

voltage. The resonance frequency and the attenuation are amplitude independent, and
there is no evidence of harmonic generation. In a sample that is damaged (or nonlinear
mesoscopic to begin with), one observes an amplitude-dependent resonance frequency
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shift (a softening of the modulus, in general), harmonics are created by the nonlinearity
of the medium, and the attenuation increases significantly with drive voltage. Based on
the P-M model, the relationship between the drive amplitudes and the various nonlinear
phenomena provides clues to the type of nonlinearity of the material [11, 13]. The
presence of such nonlinear effects indicates microcracking and damage [7].
Figure 2 illustrates the experimental results for a slate sample before and after damage

impact. The resonance curves for the intact sample do not clearly show signs of soft-
ening. However, analysis of the resonance maxima, i.e., plotting the relative resonance
frequency shift, ( f0 − f )/ f0 (with f0 the linear resonance frequency and the f the res-
onance frequency at increasing drive voltage), versus the measured peak acceleration,
reveals a slight linear decrease of the resonance frequency with increasing amplitude.
The measured harmonics, obtained at peak resonance, are all at least 60 dB below the
fundamental. The attenuation factor ξ is barely increasing with amplitude [(ξ − ξ0)/ξ0
is plotted, where ξ0 is the modal damping ratio at low strain and ξ is the attenuation at
increasing drive voltage]. For the damaged sample, the softening becomes significantly
more apparent. A similar analysis of the resonance frequency shows that the nonlinear
effect is raised by two orders of magnitude due to the induced microdamage. The am-
plitude dependence is still linear. Also, with the greater frequency shift, the harmonic
spectrum changes dramatically. The third harmonic becomes dominant, and its depen-
dence on the fundamental acceleration amplitude is quadratic. It is remarkable that the
second harmonic does not show nearly a similar increase. Finally, we observe a signif-
icant increase in nonlinearity of the damping. The attenuation depends linearly on the
measured resonance amplitude. (For a method to invert the attenuation in the case of a
skewed resonance peak, we refer the reader to the work of Smith and TenCate [14].)

3. Phenomenological Model

The linear resonance frequency shift, the quadratic amplitude dependence of the third
harmonic, and the linear increase of the attenuation with increasing drive level are typical
observations of mesoscopic hysteretic materials. From various static and dynamic exper-
iments we do know that microcracked materials cannot be described by classical theory.
When cracked, intact materials become highly nonlinear, and/or exhibit hysteresis and
discrete memory in their stress–strain relation [6]. As discussed in Part I, the theoretical
description of nonlinear mesoscopic elastic materials contains terms that describe clas-
sical nonlinearity, as well as hysteresis, and discrete memory [3, 4, 13, 15–18]. In order
to describe the typical observations illustrated later, in Fig. 3, it suffices to account only
for hysteretic effects (i.e., the effect of classical anharmonicity of the energy density is
negligible). In this case, the constitutive relation between the stress σ and the strain ε

can be expressed as follows:

σ =
∫
K (ε, ε̇) dε, (1a)

with K the nonlinear hysteretic modulus (neglecting the classical perturbation terms),
given by

K (ε, ε̇) = K0{1− α[%ε + ε(t) sign(ε̇)]+ · · ·}. (1b)
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Fig. 2. Single–mode nonlinear resonance acoustic spectroscopy of the first bending mode of
an intact (left) and a microdamaged slate beam (right): top row, measured resonance curves at
10 different drive levels; second row, relative resonant frequency shift ( f0 − f )/ f0 as a function
of the peak acceleration amplitude measured at the different drive levels; third row, harmonic
content at peak acceleration; bottom row, relative change of the measured attenuation (ξ −ξ0)/ξ0
as a function of peak accelerations.
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Here, K0 is the linear modulus,%ε is the local strain amplitude over the previous period
[%ε = (εMax − εMin)/2 for a simple continuous sine excitation], ε̇ = dε/dt the strain
rate, sign(ε̇) = 1 if ε̇ > 0 and sign(ε̇) = −1 if ε̇ < 0 [13, 18]. The parameter α is a mea-
sure of the material hysteresis. A hysteretic nonlinear stress–strain relation as described
in first-order approximation by Eq. (1) is capable of explaining the above-described
dependencies. Indeed, substituting Eq. (1a) into the wave equation and calculating the
nonlinear contribution to the solution, we find (1) a linear decrease of the resonance
frequency for increasing strain levels,

f0 − f
f0

= C1 %ε; (2)

(2) a quadratic amplitude dependence of the third harmonic,

%ε3 = C2 %ε2; (3)

and (3) a linear increase of the modal damping ratio (decrease of the quality factor Q),

ξ − ξ0

ξ0
= C3 %ε. (4)

The coefficients Ci in all three relationships are proportional to the hysteresis pa-
rameter α. Thus, any increase of these coefficients reflects an increase of the nonlinear
hysteretic behavior of the material. Finally, it can also be shown that hysteresis does not
affect the level of the even harmonics [18].
It is important to note that these results are essentially different from these for a

classical nonlinear oscillator, such as the Duffing-type oscillator [19]. A classical treat-
ment of nonlinear oscillations, using a power-law expansion of the constitutive equation,
always predicts a quadratic decrease of the resonance frequency with increasing drive
voltage, together with a cubic amplitude dependence of the third harmonic amplitude.
Furthermore, their will be no nonlinear energy dissipation in a classical system. The
experimental data shown in Fig. 2 clearly argue that hysteresis is fundamental in the
description of nonlinear phenomena in quasi-brittle materials.

4. Results

In a preliminary experiment we induced progressive damage in a beam of slate by con-
secutive hammer impacts (10 sessions) concentrated in a region around the middle of
the beam (where the strain in the first bending mode is known to be largest). After
each impact, a set of 10 resonance curves was measured at increasing drive voltage.
Figure 3 illustrates the analyzed data for the amplitude-dependent frequency shift and
third harmonic generation in the impact experiment. The frequency shift shows a linear
dependence on the fundamental acceleration amplitude for all cases. The third harmonic
invariably displayed a quadratic amplitude dependence. With increasing number of im-
pacts, we observed significant increase of the proportionality factors, and consequently,
of the hysteretic strength parameter α. The relative increase before and after the impact
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Fig. 3. SIMONRAS results for the assessment
of progressive damage in the hammer impact ex-
periment: top, logarithmic representation of the
relative resonance frequency shift as a function
of the resonance peak acceleration at different
stages in the impact experiment; bottom, idem
for the amplitude dependence of the third har-
monic.

Fig. 4. Logarithmic representation for the am-
plitude dependence of the second harmonic at
various stages in the hammer impact experiment.
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sessions equals 10. A similar increase was noted for the attenuation (not shown). How-
ever, as illustrated by Fig. 4, the second harmonic did not show a significant increase. This
is no surprise: hysteresis has little effect on the even harmonics, which are typically the
results of anharmonicity of the elastic energy (as treated in classical nonlinear theory).
Despite the increase of the nonlinearity by a factor of 10, there was no evidence of

macrocracking from the surface. We believe that the increase is due entirely to the local
increase of the microcrack density in the middle of the beam.
Nonlinearity is essentially linked to the stress–strain relation. Nonlinear effects will

preferably emerge at locations where stress and strain are larger. During the impact
experiment, all impacts were concentrated around the middle of the beam, exactly where
the strain for the first bending mode is largest. As a test we also performed impacts on
the edges of the beam. There was no significant increase of the nonlinearity for these
measurements.
In addition to the nonlinearmeasurements, analysis of the lowest-amplitude resonance

curves after each impact provided two linear material parameters: resonance frequency
and linear attenuation. The relative reduction of the linear (low-amplitude) resonance
frequency before and after the impact sessions was only 5%. The linear attenuation
(modal damping ratio) increased by 70%. Linear damping is thus significantly more
sensitive to microcracking than the resonance frequency (or Young’s modulus), but the
relative change (1000%) in the nonlinearity parameter is far superior. It is obvious that
measuring the nonlinear properties of a material will be more efficient in the detection
of microcracking and can therefore be used earlier in the damage process.
The second experiment aimed at damage assessment by nonlinear resonance during

controlled quasi-static fatigue loading. Three slate beams were subjected to mechanical
aging by means of three-point-bending (two supports and one force cel acting in the
middle of the beam). The applied load was cycled between 0 and 28 N, which is high
enough to induce permanent fatigue damage after several hundreds of cycles. Each cycle
took about 12 s. A fourth identical beam served as reference and was cycled between 0
and 15 N.
The typical response in force–displacement space to continuous cycle loading is

shown in Fig. 5. One can distinguish three regions: (1) the elastic regime where damage
by microcracking is minimal; (2) the plastic regime, where progressive damage occurs
in the form of microcracking, with continuously increasing permanent deformation as a
result; (3) the terminal regime, where microcracks coalesce to form a macrocrack, and
lead eventually to complete failure of the material. After each cycle during the test, the
computer-controlled apparatus calculates the apparent instantaneous modulus, E , from
the quasi-static force–displacement curves. This value is then compared to the initial
value, E0, and used to define a damage index D, such that D = 1− E/E0. In the elastic
regime, there is almost no reduction of the Young’s modulus: D # 0.0. In the plastic
regime, the modulus is continuously softening: 0.0 < D < 0.5. Finally, the modulus
decreases quickly and drastically in the terminal regime: D > 0.5.
Single-mode nonlinear resonance acoustic spectroscopy (SIMONRAS) was used to

measure the linear and nonlinear parameters of the beams at regular instances in the
degradation process. The analyzed results for one of the beams are illustrated in Fig. 6.
Each time, 10 resonance curves were taken at increasing drive levels. The measurements
were taken in the elastic, the plastic, and the terminal regimes. A significant increase of
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Fig. 5. Typical force–displacement evolution during
cyclic fatigue loading on a slate beam in three-point
bending.

the resonance frequency shift and the third harmonic levels can be observed in going
from the elastic to the plastic regime (Figs. 6a and b). The fatigue damage is completely
controlled by microcracks. No macrocracks are visible at this stage. In the terminal
stage, a macrocrack develops at the surface. Note that the linear resonance frequency
shift and quadratic power law for the third harmonic are verified through all stages of
the fatigue loading experiment. Near failure, the nonlinearity coefficient deduced from
the resonance frequency shift increases by a factor of 830 compared to the value in the
elastic regime. A similar increase is noted in the dependence of the third harmonic. The
second harmonic levels do not change significantly in the plastic regime. Only when the
macrocrack appears does its proportionality to the square of the fundamental suddenly
increase by a factor of order 100 (Fig. 6c).
Just as in the case of the hammer impact experiment, we followed the evolution of

the linear material parameters as a function of the fatigue damage. Figure 7a illustrates
the evolution of the linear resonance frequency of the first bending mode and the linear
attenuation, relative to their initial values, in terms of the damage parameter D for all four
beams. Note, however, that D is defined in terms of the localYoung’s modulus measured
in the middle of the beam. Indeed, three-point bending specifically induces damage in
the middle of the sample. In reality, the true Young’s modulus is larger. Therefore, the
damage factor introduced above must be considered as an indicator of local damage; the
global damage factor D is smaller. Anyway, Fig. 7a clearly illustrates that measures of
linear damping are more sensitive to damage than the changes in the linear resonance
frequency. At the macrocrack stage, the attenuation increased by a factor of 3.2, while
the linear resonance frequency is reduced only by 25%.
In addition to the linear parameters, we plotted the relative evolution of the nonlinear

frequency shift parameter in Fig. 7b (note the change to logarithmic scale for the Y axis
compared to Fig 7a). Again it is obvious that the investigation of the nonlinear material
properties is superior to assess micro- and macrodamage. The sensitivity and detection
limit improve significantly by choosing a nonlinear technique over a linear method. This
implies that nonlinear parameters can be used to detect damage at a much earlier stage
of degradation.
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Fig. 6. Cyclic fatigue loading experiment: (a)
relative resonance frequency shift as function of
the measured peak acceleration amplitude at dif-
ferent stages in the fatigue process; (b) idem for
the amplitude dependence of the third harmonic;
(c) idem for the second harmonic.

5. Conclusions

Based on the experimental SIMONRAS results, quasi-brittle materials such as slate (and
many other cementitious materials) exhibit nonclassical, amplitude-dependent behavior.
Their nonlinearity is manifested by a linear dependence of the resonance frequency on
the measured resonance peak acceleration. Their attenuation is also linearly increas-
ing with amplitude and the third harmonic shows a quadratic dependence. These three
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Fig. 7. Cyclic fatigue loading experiment: (a)
variation of the linear material parameters (res-
onance frequency and attenuation) with respect
to their initial values as function of the damage
index D; (b) idem, with the addition of the vari-
ation of the nonlinear parameter (in logarithmic
scale).

observations cannot be explained by classical nonlinear theory. Nonlinear models do re-
quire the incorporation of hysteresis in the constitutive equations. In fact, the hysteretic
nonlinearity in these materials completely dominates the classical atomic nonlinearity.
Micromodeling of the complex nonlinear hysteretic compliance of cracks and flaws is
essential in simulating the macroscopic features observed in the nonlinear dynamics of
quasi-brittle materials.
The nonlinear mesocopic nature of quasi-brittle materials becomes even more ap-

parent when damaged. Significant increase of the nonlinearity has been observed after
hammer impact, and during mechanical cyclic fatigue loading. The progressive dam-
age/fatigue experiments discussed in this paper clearly illustrate that the sensitivity of
nonlinear methods to the detection of damage features is far greater than any linear
acoustical method. Therefore, acoustic diagnostic methods that focus on nonlinear phe-
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nomena such as wave distortion by creation of harmonics, nonlinear attenuation, and
amplitude-dependent resonance frequency shift have a strong potential in damage de-
tection.
The nonlinear resonance technique is a relatively fast and efficient technique to assess

global damage in a material. It can be applied to any type of geometry. Other nonlinear
methods, such as nonlinear wave modulation spectroscopy (NWMS) [8], can be applied
as a complementary technique to investigate more localized damage.
In the near future, we expect that the methodology of nonlinear elastic wave spec-

troscopy (NEWS) techniques will be developed and applied for various materials testing
procedures. Their impact on the economy and safety can be enormous. Nonlinear meth-
ods may be implemented in applications as diverse as general production quality control
(fail/pass tests), monitoring fatigue damage in composites, buildings, bridges, investi-
gating high-temperature resistance of ceramics and concrete (fire damage), examining
welding bonds in gas and oil pipelines, inspecting aircraft and spacecraft, etc.
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